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INTRODUCTION 

 
In November, 1957, the well-

known Citrus Experiment Station (CES) of 
the University of California at Riverside, 
USA, celebrated its 50th anniversary. This 
was a good opportunity to hold the first 
international conference on so-called 
“virus” diseases of citrus, of which many 
had been studied in California, if not in 
Florida. Maladies such as Tristeza, 
Psorosis, Concave Gum and Blind Pocket, 
Crinkly leaf and Infectious variegation, 
Stubborn, Xyloporosis and Cachexia, 
Exocortis, and Vein enation had been 
shown to be transmissible by graft-
inoculation. and were, for this reason, 
thought to be of viral nature, but not a 
single causal agent had yet been identified, 
mechanically transmitted, purified, or even 
seen in the electron microscope.  

Two historically important diseases 
were not covered at the 1957 citrus “virus” 
disease conference because they were not 
known by the scientific community. The 
first deals with “Infectious chlorosis of 
Citrus”, studied by L. C. Trabut in Algeria 
in the 1900s and 1910s (5). He transmitted 
the disease agent by graft inoculation (see 
1). This is the first recorded graft-
transmission of a citrus disease. Trabut is 
also known for having noted and selected 
the Clementine mandarin in Father 
Clement Rodier’s garden near Oran, 
Algeria. The second topic concerns also 
transmission: L. K. Lin was able to 
transmit Huanglongbing by graft-
inoculation in southern China in the 1950s, 
and thus proved the infectious nature of 
the disease (4).   

 In view of the importance of graft-
transmissible diseases and the need for 
international cooperation, the International 
Organization of Citrus Virologists (IOCV) 
was founded during the 1957 meeting in 
Riverside (Fig. 1). Every 3-4 yr since, 
IOCV has met in different locations in the 
six continents where citrus is grown. At 
the 9th conference in Argentina in 1993, 
the 25th anniversary of the IOCV was 
celebrated and reviewed by Garnsey (2), 
and Lee and Garnsey (3) updated progress 
at the 13th Conference. 

The 50th anniversary of the 
foundation of IOCV in Riverside in 1957 
was celebrated in October 2007 in Adana, 
Turkey, where the IOCV held its 17th 
conference. During these first 50 yr of 
IOCV, research on graft-transmissible 
diseases of citrus, mostly by members of 
the IOCV community, has led to the 
discovery that many of these diseases were 
indeed due to viruses, but others were 
found to be caused by, or associated with, 
new agents that were unknown in the 
1950s, namely viroids and endogenous 
bacteria. One of us (JMB), who witnessed 
the foundation of IOCV in 1957 and has 
attended all but one of the 17 IOCV 
conferences, has brought back to our 
memories, in the June 2008 IOCV 
newsletter, some of the organizational and 
social highlights of these conferences as 
well as their pre- and/or post-conference 
tours. Here, we present a summary of the 
scientific achievements accomplished 
during the last 50 yr in the study of graft-
transmissible diseases of citrus. 
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Fig. 1. Delegates attending the “Citrus Virus Diseases” conference in Riverside, CA in 1957 at which the 
IOCV was founded. 
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I. VIROIDS 
  

Discovery of viroids: PSTVd and 
CEVd. Viroids were discovered through 
the study of two diseases: potato spindle 
tuber (PST) and citrus exocortis (CE). CE 
emerged as a problem associated with 
Tristeza-Quick decline (TQD). When it 
was learned that sour orange was 
responsible for TQD, control of the disease 
involved replacing sour orange by TQD-
compatible rootstocks. CE was described 
in 1948 as a bark scaling disorder affecting 
trifoliate orange rootstocks used to control 
TQD (15). In Australia, the bark-scaling 
disease on trifoliate orange was called 
“Scaly butt” and was shown to be 
transmissible by graft-inoculation (4, 5). A 
similar disease was reported on Rangpur 
lime rootstocks in Brazil and was 
considered to be the same as CE (25). 
Major developments occurred when Etrog 
citron was shown to be a sensitive 
indicator plant for CE (7, 41, 42), and 
when the CE agent was transmitted by 
means of dodder (Cuscuta subinclusa) 
and/or mechanically to petunia and other 
herbaceous plants (52, 53, 54, 55, 56). 
These herbaceous hosts, as they showed 
high titers of the disease agent, made it 
easier for Semancik & Weathers (45) to 
characterize the CE agent. Indeed, using 
Gynura aurantiaca plants, they found that 
the agent was an infectious, naked, low 
molecular weight RNA, similar to the 
potato spindle tuber (PST) agent studied 
by Diener (11) who coined the name 
“viroid” for the new agent. 

The name “viroid” was adopted for 
these small RNA molecules, and the CE 
agent became known as the CE viroid or 
CEVd. As the result of the work of Diener 
and Semancik, viroids were soon 
recognized as a new type of plant pathogen 
with the following characteristics. They 
are covalently closed (circular) single-
stranded RNA molecules. They are small 
RNA molecules with only 246 nucleotide 
residues for the smallest viroid, and 401 
for the largest one. They do not code for 

proteins. They replicate, using the host-cell 
machinery, and are considered to be fossils 
of a pre-cellular world. 

CEVd is only one of several 
citrus viroids. Three developments were 
essential for the discovery of additional 
citrus viroids: (i) the use of citron, a less 
selective host than gynura (12, 13, 14), as 
the source of viroid RNAs; (ii) the use of 
sequential Polyacrylamide Gel Electro-
phoresis (sPAGE) (38), and (iii) the use of 
silver staining to detect the viroid RNA 
bands on the gel, as developed for tRNAs 
(18). Under these conditions, when nucleic 
acid preparations of citron plants 
inoculated with different field sources 
were analyzed by sPAGE, all sources from 
both California and Spain were found to 
contain several viroids with distinct 
physical and biological properties (12, 13, 
14). The total number of different viroids 
amounted to five: CEVd, CVd-I, CVd-II, 
CVd-III, and CVd-IV. The International 
Committee on Taxonomy of Viruses has 
adopted the terms Citrus bent leaf viroid 
(CBLVd), Citrus dwarfing viroid (CBVd) 
and Citrus bark cracking viroid (CBCVd) 
for CVd-I, CVd-III and CVd-IV, 
respectively. When citrons were inoculated 
with single viroids, some distinct 
symptoms were observed. Similar results 
were also obtained by others (16, 20, 22). 
An additional viroid initially termed CVd-
OS was also reported in Japan (19) and 
recently renamed Citrus viroid VI (CVd-
VI). 

Cachexia is also caused by a 
viroid. Reichert and Perlberger (35) 
described a disease of sweet lime in 
Palestine to which they gave the name 
“xyloporosis”. Childs (8) described a 
disease on Orlando tangelo that resembled 
xyloporosis and gave it the name 
“cachexia”. He also showed cachexia to be 
graft-transmissible (9).  

Roistacher et al. (40) suggested that 
cachexia might be caused by a viroid 
because of the similarity in transmission 
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properties between the cachexia agent and 
CEVd. Semancik et al. (46) confirmed this 
hypothesis in 1988. They analyzed by 
sPAGE the nucleic acids extracts from 
citron tissues only infected with severe 
isolates of Cachexia and detected an RNA 
of about 300 nucleotides not observed in 
healthy extracts (46, 47). The RNA had all 
the properties of viroids. In addition, when 
inoculated first to citron and next from 
citron to Parson’s special mandarin, the 
indicator plant for cachexia (39), typical 
cachexia symptoms were obtained. 
Furthermore, the cachexia viroid could be 
identified with CVd-II, and more 
specifically with CVd-IIb (also termed 
CCaVd for citrus cachexia viroid), CVd-
IIa and CVd-IIb being two variants of 
CVd-II (13, 14). Only the fast migrating 
variant, CVd-IIb, induced symptoms when 
inoculated on Parson’s Special mandarin 
indicator plants or on field grown Orlando 
tangelo and Alemow. Later, sequencing 
analysis showed that a five-nucleotide 
motif located in the variable “V” domain 
allowed discrimination between the 
pathogenic, cachexia-inducing variant 
CVd-IIb and the non-pathogenic CVd-IIa 
variant (33, 34, 36). 

The cachexia viroid is a variant 
of the Hop Stunt Viroid (HSVd). 
Another interesting development occurred 
when it was shown that CVd-II (IIa and 
IIb) hybridized with HSVd-specific cDNA 
probes, thus showing that the cachexia 
viroid CVd-IIb was a variant of the hop 
stunt viroid (1, 10). Similar conclusions 
were also obtained and confirmed by 
sequence comparisons (2, 23, 43, 44). As a 
consequence, the cachexia viroid is now 
officially named HSVd. 

Cachexia and xyloporosis are one 
and the same disease. Reanwarakorn and 
Semancik (37) have shown the cachexia-
inducing variant of HSVd to cause not 
only cachexia on Orlando tangelo but also 
xyloporosis on Palestine sweet lime. 
Koch’s postulates have been fulfilled for 
both diseases. 

Effect of single and multiple 
citrus viroids. The major results of an 
extensive experimentation carried out in 
Corsica to study the effect of single and 
multiple viroids on Clementine trees 
grafted on trifoliate orange were as follows 
(50, 51). (i) CEVd induced exocortis 
symptoms on trifoliate orange. 
Surprisingly, this is probably the first time 
that Koch’s postulates for CEVd were 
carried out, even though the association of 
CEVd with exocortis symptoms on 
trifoliate orange was well known 
previously. (ii) Only the cachexia variant 
of HSVd induced cachexia symptoms on 
the Clementine scion. (iii) CEVd, HSVd, 
or CVd-IV (CBCVd) induced bark-
cracking symptoms on the trifoliate orange 
rootstock. (iv) Antagonism was observed 
between CEVd and CVd-IV (CBCVd) for 
bark-scaling and bark-cracking symptoms 
on trifoliate orange. (v) Synergisms were 
noticed; for instance between CVd-I 
(CBLVd) and CVd-III (CDVd), they 
resulted in exocortis-like scaling 
symptoms on trifoliate orange in the 
absence of CEVd; an exocortis-like 
reaction was also observed on citron. In 
Japan, multiple citrus viroids have also 
produced exocortis-like symptoms on 
citron (20). In Cyprus, exocortis and 
cachexia viroids affected growth, yield and 
fruit quality of lemon trees grafted on sour 
orange (21).  

The gummy bark agent: viroid or 
not? First reported as phloem 
discoloration of sweet orange (27), gummy 
bark (GB) on sweet orange (29) in Eastern 
Mediterranean, North-African, Near East 
and Middle East countries has symptoms 
very similar to those of cachexia on 
mandarin. GB being reported as graft 
transmissible (27, 28, 29) and Cachexia 
being caused by a viroid, the idea that the 
GB agent was also a viroid gained 
popularity. The cachexia viroid being a 
variant of HSVd, the possibility existed 
that the putative GB agent might be an 
additional variant of HSVd (30). However, 
molecular characterization of HSVd 
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variants present in GB sources present in 
Turkey did not allow identification of such 
a variant (31). Several GB sources from 
the Sultanate of Oman were also studied 
(6). In addition to HSVd, all samples 
contained CEVd, CVd-III (CDVd), and 
CVd-IV (CBCVd), and novel variants of 
CEVd and CVd-III (CDVd) were 
identified in all the GB sources. These 
results as well as previous data ruled out 
CVd-I (CBLVd) as the causal agent of GB, 
but there were no clues to entertain or 
reject the possibility that CVd-IV 
(CBCVd) or the new variants of CEVd and 
CVd-III (CDVd) may be involved.  

Recent work with several GB 
samples from the Sudan has given 
additional data (24). (i) Similar to the 
results from Turkey and Oman, only CVd-
IV (CBCVd) was found in all GB sources 
from the Soudan. (ii) An HSVd variant as 
the causal viroid of GB had to be ruled out 
since two Sudanese sources, one  with 
severe GB and one with mild GB, were 
free of HSVd. (iii) CEVd and CVd-III 
(CDVd) , found in all sources from Turkey 
and Oman, were not present in two sources 
of the Sudan. Therefore, CVd-IV 
(CBCVd) remains the only candidate for a 
putative viroid etiology of GB. 

CVd-V: a new viroid in Atalantia 
citroides. Plants of Atalantia citroides 
grafted on rough lemon rootstocks were 
graft-inoculated in the Atalantia scion with 
the five citrus viroids (CEVd, CVd-I 
(CBLVd), CVd-II (HSVd), CVd-III 
(CDVd), and CVd-IV (CBCVd)) (3). 
Three years later, all five co-inoculated 
viroids were detected in the rough lemon 
rootstocks, but none in the Atalantia 
scions. However, a new viroid, CVd-V 
was detected in the Atalantia scions in 
which it replicated and accumulated to 
detectable titers. Infectivity of CVd-V was 
demonstrated by graft- and/or slash-
inoculations to citron. Partial sequencing 
has shown that CVd-V contains two 
segments corresponding to the upper and 
lower strands of the Conserved Central 

Region (CCR) of members of the genus 
Apscaviroid.  

This work raises several interesting 
questions. The fact that the five viroids 
inoculated in the Atalantia scions could 
not be detected in these scions, but were 
present in the rough lemon rootstocks, 
suggests that the long-distance transport of 
viroids functions in Atalantia, but that the 
infection process via cell-to cell movement 
via plasmodesmata is impaired. However, 
even though the five inoculated viroids did 
apparently not replicate in Atalantia, a new 
viroid, CVd-V, was able to replicate in 
Atalantia as well as in citron. CVd-V has 
been recently characterized as a new 
member of the genus Apscaviroid (49). 

Viroids as dwarfing agents. 
Several publications have been devoted to 
using viroids as dwarfing agents for high 
density plantings. Hutton et al. (17) is an 
excellent example of such work. Among 
the viroids tested in long-term field assays, 
CVd-III (CDVd) has been recognized as 
the most promising viroid to control tree 
size without undesirable effects. Several 
variants of this viroid were initially 
recognized by their distinct mobilities in 
sPAGE analysis (13, 14) and later 
characterized as three distinct sequence 
variants (CVd-IIIa, CVd-IIIb, CVd-IIIc) 
differing in size by as much as 18 
nucleotides (34, 48). Further 
characterization of 33 field isolates 
recovered from different hosts and 
different locations showed that most 
variants were highly similar to CVd-IIIa or 
to CVd-IIIb, whereas variants related to 
CVd-IIIc were rather unusual (26). These 
variants act as true strains with different 
levels of severity on the Etrog citron 
indicator (26) but only limited information 
is available regarding their effect as 
dwarfing agents on field grown trees (50).  

Conclusion. Viroids were 
unknown in 1957 when IOCV was 
founded. The work on citrus exocortis 
disease was essential for the discovery of 
viroids  in   general,  and  citrus  viroids  in 
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particular (45). By 2007, 50 yr  after the 
foundation of IOCV, seven citrus viroids 
have been characterized: Citrus exocortis 
viroid (CEVd), Citrus bent leaf viroid 
(CBLVd, ex-CVd-I), Hop stunt viroid 
(HSVd, ex-CVd-II), Citrus dwarfing 

viroid (CDVd, ex-III), Citrus bark 
cracking viroid (CBCVd, ex-CVd-IV), 
CVd-V and Citrus viroid VI (CVd-VI, ex-
CVd-OS) (3, 12, 13, 14, 19, 46, 47). They 
belong to four genera in the Pospiviroidae 
family (Table 1). 

 
 

                                                        TABLE 1 
LIST OF  CITRUS VIROIDS 

Genus Species 
Pospiviroid CEVd 
Hostuviroid HSVd  (ex CVd-II) 
Cocadviroid CBCVd  (ex CVd-IV) 
Apscaviroid CBLVd  (ex CVd-I) 
Apscaviroid CDVd  (ex CVd-III) 
Apscaviroid CVd-V 
Apscaviroid CVd-VI (ex CVd-OS) 
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II. VIRUSES 
  

In 1957, when IOCV was founded, 
several citrus diseases were known to be 
infectious, because the agents associated 
with these diseases had been transmitted 
by graft-inoculation. In those days, the 
only agents known to be graft-
transmissible in plants were the viruses. 
Therefore, all graft-transmissible diseases 
of plants were thought to be virus diseases, 
even though the putative virus had never 
been seen or purified. The “virus” 
hypothesis turned out to be true for several 
diseases, such as tristeza, psorosis, 

leprosis, infectious variegation, or satsuma 
dwarf, for which the causal viruses were 
eventually isolated, but not for other 
diseases, such as exocortis and cachexia, 
which turned out to be caused by viroids, 
as seen above, or stubborn and 
huanglongbing [ex-greening], where 
bacterial agents were found (see below 
Endogenous bacteria). Here only major 
developments in virus diseases of citrus 
since 1957 will be considered. Early 
historical developments of these diseases 
can be found in references 1 and 2.  
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                                                          TRISTEZA 
 
 
Citrus tristeza virus (CTV) (genus 

Closterovirus, family Closteroviridae) is the 
causal agent of devastating epidemics that 
changed the course of the citrus industry. 
Adapted to replicate in phloem cells of a few 
species within the family Rutaceae and to 
transmission by a few aphid species, CTV 
and citrus probably coevolved for centuries 
at the site of origin of citrus plants. CTV 
dispersal to other regions and its interaction 
with new scion varieties and rootstock 
combinations resulted in three distinct 
syndromes named (i) tristeza (quick 
decline), (ii) stem pitting, and (iii) seedling 
yellows. The first, inciting decline of 
varieties propagated on sour orange, has 
forced the rebuilding of many citrus 
industries using tristeza-compatible 
rootstocks. The second, inducing stunting, 
stem pitting and low bearing of some 
varieties, causes economic losses in an 
increasing number of countries. The third is 
usually observed by biological indexing, but 
rarely in the field (162). Over the last 
several years, our understanding of CTV has 
grown considerably and review articles on 
various aspects of tristeza have appeared 
(26, 27, 139, 162, 204). It is hoped that the 
following lines will reflect these remarkable 
achievements. 

The causal agent. The infectious 
nature of the disease, named tristeza by 
Moreira in Brazil in 1942 (154), was 
established in 1946 by Fawcett and Wallace 
(71) in California when they induced the 
decline of sweet orange on sour orange by 
graft inoculation, and by Meneghini (152) in 
Brazil when he transmitted the disease by 
Toxoptera citricida. Thread-like particles 
associated with tristeza were purified and 
seen in the electron microscope for the first 
time by Kitajima et al. (130, 131) in Brazil. 
The work was reported in 1963 in São Paulo 

city at the third IOCV conference, and 
tristeza became the first citrus disease, 
whose infectious nature was supported by 
the presence of associated virus particles in 
the infected plants. The thread-like or 
flexuous particles had a diameter of 10 to 12 
nm and were as long as 2000 nm. Further 
purification in Israel led to the identification 
of a ~28 kDa coat protein in 1970-1972 (19, 
20), and in 1985 to the characterization of a 
single stranded RNA genome of 6.5 x 106 
Da (24), a value in agreement with a double 
stranded RNA replicative form of 13.3 x 106 
Da observed previously (59). These RNA 
values suggested a genomic size of about 20 
kb, thus giving CTV the largest RNA 
genome of known plant viruses. In the 
meantime, mechanical transmission of CTV 
by the stem-slash technique was 
demonstrated and allowed Koch’s postulates 
to be fulfilled (78, 82, 169). Taxonomically, 
CTV was found to be a semipersistently 
aphid-transmitted closterovirus associated 
with phloem tissue in infected citrus (22). 
Eventually, from 1995 to 2006, the complete 
nucleotide sequences of biologically distinct 
CTV isolates were achieved through the 
efforts of many investigators in several 
laboratories (5, 129, 144, 213, 232, 244, 
252). The positive-stranded genomic RNA 
(gRNA) of Florida CTV strain T-36 
consisted of 19,296 nt (129) and the Israeli 
CTV strain VT had 19,226 nt (144). The 
genomes of the two strains had similar 
organizations and encompassed 12 open 
reading frames (ORFs) and two untranslated 
regions (UTRs) at both ends of the gRNA. 
As known today (162),  ORFs 1a and 1b, 
encoding proteins of the replicase complex, 
are directly translated from the genomic 
RNA, and together with the 5'- and 3'-UTRs 
are the only regions required for RNA 
replication. The remaining ORFs, expressed 
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via 3'-coterminal subgenomic RNAs 
(sgRNAs) (117), encode proteins required 
for virion assembly and movement (p6, p65, 
p61, p27 and p25), asymmetrical 
accumulation of positive and negative 
strands during RNA replication (p23), or 
suppression of post-transcriptional gene 
silencing (p25, p20 and p23), with the role 
of proteins p33, p18 and p13 as yet 
unknown. The latter three proteins have been 
shown to be prescindible for systemic 
infection of at least some citrus hosts (234). 

The major coat protein, CP or p25, 
was found to encapsidate about 97% of the 
genomic RNA while the minor coat protein, 
p27 or CPm, a diverged copy of CP, covered 
the rest of the genome at its 5’ end (72, 225).  

Replication and expression of the 
CTV genome produces multiple 
subgenomic and defective RNAs. As with 
other RNA viruses replication of the CTV 
genome requires the synthesis of a negative-
stranded complementary RNA that serves as 
template for the synthesis of new positive-
stranded gRNA molecules. Expression of 
genes in the 3’ moiety of the gRNA leads to 
production of positive- and negative-
stranded 3’ co-terminal sgRNAs, the first 
being about 40-50 times more abundant than 
the second (224). Production of these 
sgRNAs is regulated independently both in 
amount and in timing (117, 181) by 
individual controller elements (12, 101). 
Also, a set of less abundant 5′-coterminal 
positive-stranded sgRNAs is generated, 
likely by premature termination of the 
gRNA at those controller elements (101). 
Finally, two abundant positive-stranded 5′-
coterminal sgRNAs of about 800 nt (LMT1 
and LMT2) are produced by different 
mechanisms (13, 45, 102, 104). Therefore, 
infected cells accumulate more than 30 
different sgRNA species. In addition to the 
genomic and subgenomic RNAs (117), 
plants infected with CTV were shown to 
contain multiple species of defective RNAs 

(dRNAs) (142, 143).  These dRNAs are 
small molecules derived from the parental 
viral genome and consist of the 5’ and 3’ 
terminal segments of the gRNA, with 
extensive internal deletions. Their formation 
in infected cells occurs after template 
switching of the RNA polymerase following 
different mechanisms (9, 142, 143, 251) and 
it can strongly influence the virus life cycle 
(replication, accumulation, symptoms). 
Mawassi et al. (142, 143) showed that at 
least some d-RNAs are encapsidated by the 
p25 coat protein.Generation of so many 
positive- and negative-stranded RNAs 
(genomic, subgenomic and defective) in 
infected cells leads to the presence of 
abundant double stranded RNAs (dsRNAs) 
in CTV-infected plant extracts, as described 
by Dodds and Bar-Joseph (59). The 
presence of these dsRNAs was exploited as 
a diagnostic tool and a way of 
discriminating between CTV isolates before 
the nature and characteristics of sgRNAs 
and d-RNAs was discovered (60, 61, 62, 
109, 156).  Ds-RNA analysis was also used 
to characterize changes in the viral 
population after aphid or graft transmission 
to new hosts (110, 156, 157, 158, 159) or 
after interference between CTV isolates in 
cross protection experiments (3, 161). It was 
later found that some of the discriminating 
dsRNAs were in fact defective dsRNAs.  

CTV-encoded proteins p20, p23, 
and p25 act as silencing suppressors in 
tobacco. Plant hosts use two RNA silencing 
systems as defense mechanisms against 
virus infections: intracellular silencing and 
intercellular silencing. In citrus hosts, genes 
involved in post-transcriptional gene 
silencing have been found in many citrus 
gene-libraries (31). For viral infection to 
take place, these host RNA-silencing 
defense mechanisms have to be suppressed. 
It has been shown that the CTV genome 
encodes at least three proteins, which 
suppress RNA silencing in Nicotiana 
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benthamiana and N. tabacum (137). Protein 
p23 suppresses intracellular silencing, 
protein p25 (coat protein) targets 
intercellular silencing, and protein p20 
inhibits silencing at both levels. It has been 
suggested that the simultaneous suppression 
of intracellular and intercellular silencing 
antiviral defense by CTV proteins may 
explain, in part, why CTV causes the most 
destructive viral disease in citrus worldwide. 
As with silencing suppressor proteins 
encoded by other viruses, at least p23 has 
been shown to be a pathogenicity 
determinant involved in the expression of 
CTV-specific symptoms like vein clearing 
in different hosts (69, 87) and seedling 
yellows in sour orange or grapefruit 
(6).CTV diagnostic and strain 
differentiation. 

 After evidence that tristeza disease 
was a transmissible disease (71, 152) and 
further description of the lime disease in 
Gold Coast (122), indexing on Mexican lime 
seedlings was firmly established as a reliable 
diagnostic of tristeza, quick decline and 
stem pitting diseases, respectively in Brazil 
(49), California (247) and South Africa 
(145). Similarly, the seedling yellows 
syndrome described in Australia (75) and 
South Africa (150), was also associated with 
tristeza symptoms in Mexican lime. 
Indexing on Mexican lime was a major 
achievement that allowed associating the 
three syndromes caused by CTV, namely 
decline, stem pitting and seedling yellows 
(146, 147, 148), even if for years it was 
accepted that CTV would be a complex 
pathogen with at least two separable 
components. This hypothesis was 
abandoned after demonstration that an 
infectious cDNA clone of the isolate T36 
from Florida was able to induce the three 
syndromes (222, 223). For 30 yr, indexing 
on Mexican lime was the only method 
available for reliable diagnostics of CTV, 
and later it has been used as the reference 

for developing new serological and 
molecular detection procedures and for 
strain characterization purposes. However, 
some isolates causing symptomless infection 
on Mexican lime have been described, that 
require alternative methods for their 
detection (1, 35). 

Quick diagnostic methods based on 
CTV detection were developed along the 
years for different purposes. Observation of 
the CTV filamentous flexuous virions in 
plant extracts by electron microscopy was 
used to diagnose tristeza infection in the 
eradication program launched in Israel (18, 
21). Light microscope observation of CTV-
induced inclusion bodies in freehand petiole 
or shoot sections cut with a razor blade and 
stained with Azur A, was proposed as 
simple diagnostic procedure that required no 
lab equipment (79, 81). However, after CTV 
purification and development of the first 
antibodies (80, 92), it was the application of 
immuno-enzymatic techniques (46) to CTV 
detection (23, 39, 84) that produced a major 
breakthrough in diagnostic of CTV diseases. 
Availability of ELISA detection was critical 
to advance our knowledge on CTV 
incidence and epidemiology and to improve 
control procedures by quarantine, 
eradication and certification programmes 
(25, 93, 95, 97, 100, 132, 180). ELISA 
detection has been massively used with 
CTV, probably more than with any other 
plant virus. Additionally, development of 
monoclonal antibodies specific to different 
epitopes allowed using ELISA to 
discriminate between CTV isolates (42, 111, 
182, 235, 242). The most widely used 
monoclonal antibodies include 3DF1 and 
3CA5, recognizing epitopes conserved in 
most CTV isolates (41, 42), and MCA13 
that recognizes an epitope largely conserved 
in virulent isolates (42, 191, 192). 

When partial or full-length sequences 
of the CTV gRNA became available, 
diagnostic procedures based on specific 
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detection of the viral RNA were developed. 
These included molecular hybridization with 
different types of probes (28, 172, 208) and 
several RT-PCR amplification-based 
methods (184, 189). The highest sensitivity 
for CTV detection was recently achieved 
using real-time RT-PCR protocols that also 
allow quantification of genomic RNA copies 
in infected citrus tissues or in viruliferous 
aphids (32, 214, 221). However, rather than 
for diagnostic purposes, the best 
contribution of these sequence-based 
detection techniques has been for CTV 
strain characterization. Variations in 
biological characteristics of CTV isolates, 
particularly in the type and intensity of 
symptoms induced in different cultivar or 
scion-rootstock combinations had been 
observed since the initial epidemics, and the 
need for procedures to reliably describe and 
characterize isolates has been stressed in 
most IOCV conferences and in CTV 
research in general (8, 14, 15, 16, 17, 35, 47, 
76, 83, 115, 123, 148, 163, 165, 166, 167, 
187, 204, 206, 216, 217, 236). Also 
evidence for the presence of different strains 
or variants in CTV isolates, which could be 
separated after aphid transmission or host 
change (107, 115, 195), was available before 
the concept that RNA viruses are usually a 
population of genetic variants was firmly 
established (65).  

For years, characterization of CTV 
isolates was based exclusively on symptom 
expression upon inoculation on different 
indicator plants. However, differences in the 
indicators and the environmental conditions 
used to perform indexing made results 
obtained in different laboratories difficult to 
compare, even if a standard indicator set and 
optimised incubation conditions were 
proposed (83, 85; 199, 243). Availability of 
different monoclonal antibodies enabled 
further characterization of CTV isolates and 
monitoring cross-protection experiments 
using differences in ELISA reaction patterns 

(42, 95, 127, 128, 183, 191, 192, 235, 236, 
255, 258). Later, when the genomic 
sequence of distinct CTV genotypes became 
available, sequence differences were 
exploited to discriminate between isolates or 
groups of isolates, to monitor cross 
protection experiments or to characterize the 
structure of viral populations and their 
changes in the aphid- or graft-transmission 
processes to new hosts. The techniques used 
for these purposes included molecular 
hybridisation with specific probes (2, 3, 4, 
135, 172, 208, 226, 228), restriction 
fragment length polymorphism analysis (90, 
91, 230), single-strand conformation 
polymorphism analysis (55, 56, 125, 138, 
209, 210, 211, 212, 218, 220, 230), and 
different RT-PCR protocols based on 
genotype-specific primers (11, 44, 118, 119, 
120, 219, 220). More recently, real-time RT-
PCR with genotype-specific probes allowed 
specific detection and quantification of 
different sequence variants present in the 
viral population of field CTV isolates (7, 
215).   

The search for a quick diagnostic to 
reliably identify severe and mild CTV 
isolates for control purposes was the aim of 
this impressive panoply of isolate 
characterization techniques. Since the 
genetic basis for CTV virulence is still 
largely unknown, they are based on 
molecular markers more or less conserved in 
isolates of either type; however, the complex 
nature of many CTV populations and the 
wide presence of recombinant sequences 
(113, 141, 144, 151, 211, 244, 245, 248, 
250) frequently jeopardizes assignment of 
unknown isolates to biologically 
characterized groups, even using several 
markers (228). There is a clear need of 
mapping the genetic determinants of the 
different CTV-induced syndromes, which 
implies the use of a proper genetic system 
based on the use and manipulation of 
infectious cDNA clones of the CTV 
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genomic RNA. In this regard, there were 
important advances in the last 10 yr (103, 
222, 223) that led to locating the genetic 
determinant of the seedling yellows 
syndrome in a 3’-terminal region including 
the gene p23 and the 3’ UTR (6). 

Transmission and epidemiology of 
CTV. CTV dispersal in nature occurs via 
different aphid species depending on the 
world region. While Toxoptera citricida, the 
most efficient CTV vector, was well 
established for years in Asia including the 
Indian subcontinent, Australia, sub-Saharan 
Africa and South America (50, 149), in the 
nineties of the past century the aphid 
reached Venezuela, Central America and 
different Caribbean countries including 
Cuba, Dominican Republic and Florida (29, 
112, 134, 197, 256, 257). Recently, it has 
been detected in back yard citrus trees in 
northern Spain and Portugal (126), far from 
the important citrus-producing areas. Aphis 
gossypii, that is about 6-25 times less 
efficient than T. citricida in transmitting 
CTV (256), was reported as the main vector 
in the Mediterranean basin and areas of 
North America (43, 58, 114, 140, 194, 254). 
A. spiraecola and T. aurantii were found 
less efficient CTV vectors than A. gossypii 
(114, 185, 254); however, A. spiraecola 
might play an important role in CTV 
dispersal in some citrus areas due to the 
large populations it builds up in comparison 
with A. gossypii (114). Myzus persicae, A. 
craccivora and Uroleucon jaceae have been 
reported as CTV vectors only in India (240, 
241). CTV transmission is considered to 
occur in a semipersistent mode, with 
viruliferous aphids being able to transmit the 
virus for at least 24 h, but infectivity being 
lost within 48 h after acquisition (194). The 
ratio of aphids carrying CTV in the field 
ranges from 19 to 27%, as detected by 
nested RT-PCR amplification of CTV RNA 
from individual aphids (140). The viral and 
aphid factors involved in CTV transmission 

are presently unknown, and the need for a 
helper factor as in other plant viruses (233) 
has not yet been demonstrated for CTV. 
This lack of knowledge on the transmission 
mechanism derives from the difficulty to 
aphid-transmit CTV after in vitro acquisition 
by the aphids from purified preparations 
(116). Inefficiency of this process is 
probably due to fragility of CTV virions that 
break easily during the purification process.  
 Availability of quick diagnostic 
procedures, mainly ELISA, allowed 
determining the spatio-temporal patterns of 
CTV dispersal in regions growing citrus 
varieties under distinct climatic conditions 
and with different aphid populations (40, 93, 
94, 95, 96, 97, 98, 100, 108, 121, 155). In 
locations where T. citricida was 
predominant, CTV incidence was found to 
increase from 5 to 95% infected trees in only 
2-4 yr; disease increase was essentially 
continuous; aggregates of infected trees 
were common, and new infections 
frequently occurred in trees immediately 
adjacent to existing infections. In contrast, in 
areas where  A. gossypii  was predominant 
the same disease increase occurred in 8-15 
yr; it followed a stair-step line; limited 
aggregation of infected trees was observed, 
and new infections usually did not occur 
close to existing infected trees, but rather 
several tree spaces away. The biology and 
feeding habits of both vector species might 
be the cause of these distinct spread patterns 
(94, 96). 
 CTV control: inoculum exclusion 
and suppression; shoot-tip grafting. The 
most efficient control measure for virus 
diseases is inoculum exclusion from non-
affected areas. For the pathosystem CTV-
citrus this can be achieved by launching 
sanitation, quarantine and certification 
programs. In early times, CTV-free 
budwood was obtained by growing nucellar 
plants, a very slow process that could not be 
applied to monoembryonic varieties, or by 
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thermotherapy of infected varieties, a 
treatment that was inefficient with some 
CTV isolates (38, 199, 200, 201). 
Development of shoot-tip grafting in vitro 
(174, 175) was a major breakthrough that 
facilitated elimination of most graft-
transmissible citrus pathogens (176, 179) 
and opened the way to improve quarantine 
procedures (177, 179) and to launch 
certification programs in which pathogen-
free local varieties or imported ones could 
be safely propagated  by citrus growers (86, 
173, 178, 180, 227, 229, 249, 259).  

With some plant viruses, disease 
spread can be reduced by controlling vector 
populations and roguing infected plants to 
reduce inoculum sources. In the case of 
CTV, available data suggest that control of 
aphids does not significantly reduce the rate 
of disease increase (99, 160). However, 
suppression of infected trees to slow down 
disease spread was performed in several 
areas with low CTV incidence, including 
Israel (21, 25), Cyprus (133) and the Central 
Valley of California (63, 64, 100). 
Obviously, suppression activities had to be 
coupled with budwood certification 
programs to avoid efficient CTV dispersal 
via infected budwood. In areas where 
disease incidence was high and/or CTV 
dispersal by aphids was too active, the only 
way to avoid tristeza damage was by using 
CTV compatible rootstocks instead of sour 
orange to propagate new citrus plantings. 

CTV control: cross-protection/ 
pre-immunization against stem pitting.  
As early as the 1950s, it became known that 
the decline and death of citrus trees grafted 
on sour orange roots could be prevented by 
the use of compatible rootstocks (33, 34, 48, 
105, 186),  but this was by no means a 
solution to control the stem pitting syndrome 
caused by CTV isolates in certain species 
and varieties such as Citrus aurantifolia 
(Mexican, West Indian, or Galego lime), 
grapefruit, and even certain sweet orange 

varieties such as Pera, which, when infected 
with severe CTV isolates, showed stem 
pitting whatever the rootstock or even when 
grown as seedling trees (88). For stem 
pitting, the solution has come from “cross-
protection”, a phenomenon in which 
infection of a sensitive plant with a 
protective (mild) isolate of a virus protects 
the plant against post-infection of a severe 
isolate of that virus (77). Early observations 
on citrus cross-protection with mild CTV 
isolates were reported in the 1950-1960s 
(51, 89, 106, 186, 190, 231). In successful 
“pre-immunization”, an application of cross-
protection, virus-free mother trees of a 
valuable citrus variety are inoculated with a 
protective CTV isolate; nursery trees 
produced from this “pre-immunized” 
variety, when planted in the field, will be 
protected against severe CTV isolates 
naturally propagated by the local CTV 
aphid-vectors. Brazil, severely affected by 
tristeza since 1937, and with CTV isolates, 
such as the Capão Bonito isolate, inducing 
stem pitting not only on Galego lime, but 
also on grapefruit and sweet orange, as well 
as Rangpur lime and Caipira sweet orange 
used as rootstocks, was one of the initial 
leaders in pre-immunization, and Gerd 
Müller (Instituto Agronomico, Campinas, 
SP., Brazil) devoted his career to citrus pre-
immunization.  

Brazil. In Brazil, existence of mild 
(protective) and severe isolates was 
demonstrated in the 1950s (51, 106) and 
reviewed in 1980 (207). The severe Capão 
Bonito isolate was described in 1968 (166). 
Identification and isolation of protective 
CTV isolates was of course essential for 
success. To that purpose, outstanding trees 
with only mild symptoms were identified in 
severely affected orchards of Galego lime, 
grapefruit, and Pera sweet orange varieties, 
with conspicuous symptoms of CTV on 
most trees. Such mildly affected trees were 
selected as putatively protective virus 
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sources. Forty five of these sources were 
used to inoculate nucellar clones of Galego 
lime, Pera sweet orange, and Ruby Red 
grapefruit for pre-immunization tests in the 
field and the greenhouse. It was found that 
several protective isolates from Galego lime 
sources, were not only protective for Galego 
lime, but also for sweet orange and 
grapefruit. However, three protective 
isolates from Pera sweet orange sources, 
while protecting sweet orange and 
grapefruit, did not protect Galego lime 
(165). Next, five of the best Galego lime 
isolates were further tested on Galego lime. 
In 1969, the trees were 6 yr old and had 
been exposed to natural infection in the field 
for 4.5 yr. The pre-immunized Galego limes 
had grown satisfactorily under conditions 
where non pre-immunized control limes 
declined rapidly (167). On the basis of these 
results, pre-immunized Galego lime clones 
were distributed to growers for further 
evaluation. Similarly, nucellar clones of 
Pera sweet orange were pre-immunized with 
the above three mild Pera sweet orange 
sources. By 1968, the best combination of 
pre-immunized Pera sweet orange clone 
(#66) became available for field testing by 
interested growers. By 1980, ten million pre-
immunized Pera sweet orange trees were 
present in nurseries, young orchards and 
production groves, most of the Pera 
budwood being derived from the original 
pre-immunized clone (52, 164). By 1997, 
the number of Pera #66 trees reached 80 
million and almost no breakdown in 
protection had been observed. More 
recently, however, there have been a few 
cases where orchards from the protected 
Pera clone had a great number of trees with 
severe stem pitting (171). This indicated that 
there was a need for new and better pre-
immunizing isolates as well as for deeper 
characterization of these isolates at the 
biological and molecular levels. RFLP and 
SSCP analyses of the coat protein gene have 

shown that changes have occurred between 
the protective CTV isolate ”Pera IAC” 
present in (i) symptomless 20-yr-old Pera 
sweet orange mother trees and (ii) 3 to 4 yr-
old daughter trees showing severe stem 
pitting symptoms, suggesting that 
breakdown of cross-protection had occurred 
(230).  

Today, all Pera sweet orange trees in 
São Paulo State are from pre-immunized 
budwood and represent the largest pre-
immunized crop in the world. In 1980, good 
protection of sweet orange had also been 
observed against the very severe Capão 
Bonito isolate of CTV (164). However, 6 yr 
later, the results were not clear cut (170). 
Similarly, numerous mild CTV isolates from 
California failed to cross protect against 
severe stem pitting isolates (205), even 
though, previously, successful cross-
protection against seedling yellow and stem 
pitting isolates in sweet orange and 
grapefruit was reported, using protective 
CTV isolates obtained in the green house by 
four different methods (202, 203).    

Australia. In Australia, stem pitting 
almost wiped out the grapefruit industry in 
the 1950s. Trials with Marsh grapefruit to 
assess the protective value of various CTV 
isolates against natural infection by severe 
strains have been in progress for 30 yr under 
two different climates: in a hot and dry 
inland site, and a milder and more humid 
coastal site. The protective CTV isolates 
were selected from vigorous and productive 
grapefruit trees in orchards severely 
debilitated by stem pitting. An acceptable 
degree of protection was obtained at both 
sites, but the protection was better at the 
inland site, benefiting from a hotter climate 
and having less abundant populations of 
Toxoptera citricida, the predominant CTV 
vector (36, 53, 76). PCR-amplification of 
the CTV coat protein gene, followed by 
RFLP analysis of the resulting cDNA was 
developed to distinguish the mild cross-
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protecting isolates used to control grapefruit 
stem pitting, from all other Australian 
isolates (91). Also, difficulties experienced 
with the protective isolate PB61 in pre-
immunization of red grapefruit trees but not 
white and pink grapefruit trees (37) have led 
to investigate whether uneven distribution of 
CTV could be a contributing factor to 
breakdown of cross protection. Indeed, in 
early autumn, CTV isolate PB61 was 
detected only sporadically in the mature 
spring flush of red grapefruit (Star Ruby and 
Rio Red), but by late autumn, CTV was 
easily detectable in all tissues of red 
grapefruits. Thus, budwood collected in 
early autumn, but not in late autumn, might 
have lacked the protective CTV isolate 
(260). These findings have resulted in 
changes in the distribution dates within the 
Australian Citrus Budwood Scheme to 
ensure that all budwood is effectively pre-
immunized with PB61.  

Japan. In Japan, protective isolates 
to control stem pitting on Morita navel 
sweet orange have been obtained by various 
methods: (i) from outstanding field trees 
(pummelo hybrid, nucellar Valencia, 
Hassaku); (ii) by heat treatment of a Morita 
navel orange infected with a severe isolate 
of CTV-seedling yellows, and (iii) by T. 
citricida transmission from CTV-infected 
trees to Mexican lime seedlings (123, 124, 
132). Groups of virus-free nursery plants of 
Morita navel grafted on trifoliate orange 
rootstock were graft-inoculated each with 
one of the eight protective isolates selected. 
Budwood from the plants infected with the 
protective strains was propagated on potted 
trifoliate orange seedlings and let to grow to 
a height of ~ 30cm. Half of these potted pre-
immunized plants were then challenge-
inoculated, each with 5 to 20 feeding T. 
citricida aphids infected with the severe 
CTV isolate carried originally by the 
original Morita navel trees. Plants were later 
transplanted to a field closely adjacent to 

citrus trees of several varieties, infected with 
severe CTV isolates. Analysis of the trees at 
4, 9, and over 10 yr after challenge 
inoculation showed that protection against 
the severe CTV isolate was effective for 7 to 
9 yr after challenge inoculation, thereafter 
the cross-protection ability was lost. In the 
early years, the pre-immunized trees were 
more vigorous, fruit size was larger, and 
yield was higher, when compared to the 
trees inoculated only with the severe isolate. 
Protective isolates M-15A and M-16A, 
obtained through T. citricida transmissions, 
gave better protection than the other 
protective isolates (124). 

South Africa. In South Africa, pre-
immunization with mild CTV isolates 
started in 1982 in the frame of the 1981 
Citrus Improvement program (CIP), in 
which all selected citrus material was 
submitted to shoot-tip grafting for 
elimination of all graft-transmissible agents, 
including CTV. As CTV is endemic and 
spread by T. citricida in southern Africa, the 
CTV- free citrus material from shoot-tip 
grafting had to be cross-protected by 
protective CTV isolates before being 
released in the field and becoming the target 
of natural infection, possibly with severe 
CTV isolates. The single protective CTV 
isolate used for cross-protection was the 
“Nartia” isolate, later called GFMS 12, from 
a 50-yr-old Nartia (Marsh-type) grapefruit in 
Western Cape province (246). Of the 
commercial cultivars grown in southern 
Africa, grapefruit is the most sensitive to 
stem pitting. Very severe CTV stem pitting 
decline was found in 1979 and 1980 to 
affect young Redblush and Marsh grapefruit 
trees in Natal and Western Cape provinces 
of South Africa, while sister trees from the 
same budwood batches, but growing in 
Transvaal and Eastern Cape provinces, did 
not develop these severe symptoms, 
indicating an influence of environment on 
symptom expression (54). Like all other 
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selected material in the CIP, grapefruit 
selections were also pre-immunized with the 
GFMS 12 isolate. However in 1993, 6-yr-
old pre-immunized Star Ruby grapefruit 
trees were found with various degrees of 
stem pitting and variable fruit size (239). It 
was later found that isolate GFMS 12 was 
not a single CTV strain. Indeed, when single 
aphid transmissions of CTV from GFMS-12 
were performed, nine different sub-isolates 
(12-1 to 12-9) were identified on the basis of 
biological and molecular characterizations 
(238). For instance, stem pitting of 
grapefruit was significantly less in plants 
inoculated with sub-isolates 12-2, 12-5, and 
12-8 than in those inoculated with the 
original isolate GFMS-12, while with sub-
isolate 12-3 stem pitting was more severe. 
Hence, in the frame of the CIP, isolate 
GFMS-12 was officially replaced by isolate 
GFMS 35 for the pre-immunization of all 
red grapefruit, including Star Ruby. Indeed, 
GFMS-35, from a Redblush grapefruit, had 
been found, over a 12-yr period, to perform 
better than GFMS-12 for protection of 
Marsh grapefruit (238). Over the years, 
isolates GFMS-12 and GFMS-35 as well as 
several additional CTV isolates have been 
further evaluated and characterized. Fifty 
single aphid transmissions from isolate 
GFMS-35 resulted in only two sub-isolates, 
35-1 and 35-2. Like sub-isolate 12-3 from 
GFMS-12, sub-isolate 35-2 produced 
significantly more stem pitting on Marsh 
grapefruit test plants than the original 
GFMS-35 isolate, but the isolate could still 
be classified as mild. Single-strand 
conformation polymorphism (SSCP) 
analysis of CTV gene fragment p27B was 
able to differentiate between isolates GFMS-
12 and GFMS-35 as well as between sub-
isolates of these isolates (138). SSCP was 
also used to show that strain prevalence of 
GFMS 12 and GFMS 35 in four different 
grapefruit varieties was altered (153). 
Finally, a field plot of Star Ruby grapefruit 

trees on Swingle citrumelo was established 
at Nelspruit to study their response to pre-
immunization with isolates GFMS-12, 
GFMS-35, sub-isolates 12-2 (mild stem 
pitting), 12-3 (more severe stem pitting), as 
well as other isolates from outstanding Star 
Ruby grapefruit trees in various regions of 
South Africa. Results on growth, production 
and disease rating were collected when the 
trees were 7-yr-old. The data showed that 
trees pre-immunized with isolate GFMS-35 
gave the best results, followed by isolate 
GFMS-78 (derived from a 10-yr-old 
planting in Malelane) and sub-isolate 12-2. 
Isolate GFMS-35 continues to be 
recommended for use as a pre-immunizing 
isolate for Star Ruby grapefruit in the 
southern Africa citrus industry (239).   
 Peru. In Peru, in the 1970s, the 
commercial production of sweet oranges, 
and in particular the Washington navel 
oranges, came practically to an end as the 
result of severe CTV stem pitting on the 
orange tree scions. The causal CTV isolates 
were introduced into Peru in the 1950s with 
Satsuma budwood from Japan. Native CTV 
isolates for cross-protection were from 
surviving Washington navel and Mexican 
lime trees selected in the 1980s. Also, CTV 
isolates derived from passage through 
Passiflora spp. (168, 202) were introduced 
from California. Some of these native and 
introduced isolates have been able to protect 
citrus under open field conditions. 
Washington navel and Mexican lime trees 
carrying the protective isolates have been 
planted with commercial success since the 
early 1990s. Certain California CTV isolates 
derived from passage through Passiflora 
have successfully protected citrus in Peru 
under severe Peruvian inoculum pressure. 
This suggests an alternative method for 
developing protective isolates relatively 
rapidly, rather than waiting for orchards to 
die and searching for surviving trees (30). 
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Transgenic citrus expressing CTV 
proteins. L. Peña and his colleagues in 
Spain have transformed citrus hosts with 
CTV genes. Transgenic Mexican lime plants 
expressing the coat protein gene (p25) of 
CTV were obtained by Agrobacterium-
mediated transformation, and protection 
against graft-inoculated CTV was 
demonstrated (66, 68). This is the first 
demonstration of pathogen-derived 
resistance in transgenic plants against a 
Closterovirus in its natural host. 
Furthermore, Mexican lime plants were 
transformed with the p25 gene under 
selective and non-selective regeneration 
conditions, i.e. with and without selection 
for nptII  (resistance to Kanamycin) and 
uidA (GUS or β-D-glucuronidase marker). 
More than 30% of the transgenic limes 
regenerated under non-selective conditions 
had silenced transgenes, and in all cases 
silencing affected all three transgenes 
incorporated (67).  

Experiments have also been 
conducted with the CTV p23 gene. As 
indicated above, p23 is one of the three CTV 
genes, which suppress the host silencing 
defence mechanism. First, gene p23 from a 
severe CTV strain (strain T36) was used to 
transform Mexican lime, a very sensitive 
CTV host. Most interestingly, the transgenic 
Mexican lime plants, free of CTV, but 
expressing protein p23, exhibited symptoms 
such as leaf vein-clearing, very similar to 
those induced by CTV itself (87). Next, the 
same results were obtained when p23 came 
from a mild CTV strain (strain 317). 
Symptoms were correlated with 
accumulation of p23 protein, irrespective of 
the source of the p23 gene, CTV strain T36 
or T317. Furthermore, citrus plants other 
than Mexican lime were also transformed 
with the p23 gene. Sweet orange and sour 
orange, two susceptible citrus hosts, and 
CTV-resistant trifoliate orange also led to 
CTV-like leaf symptoms. These symptoms 

did not develop when plants were 
transformed with a truncated version of p23. 
In these transgenic citrus plants other than 
Mexican lime, p23 was barely detectable, 
but symptom intensity correlated with levels 
of p23 transcripts. Finally, with plants, such 
as Nicotiana spp., which are non-hosts for 
CTV, expression of p23 led to accumulation 
of p23 protein, but no symptoms were 
obtained, indicating that p23 interferes with 
plant development only in citrus species and 
relatives (69). 

In the above experiments with the 
p23 gene, the transgenic Mexican limes 
expressing p23 exhibited leaf symptoms 
characteristic of CTV. However, other lines 
of p23 transgenic Mexican limes have been 
obtained, which, on the contrary, had normal 
phenotypes and did not show symptoms! 
Interestingly, these asymptomatic lines 
displayed features typical of post-
transcriptional gene silencing: multiple 
copies of the transgene, low levels of the 
corresponding mRNA, methylation of the 
silenced transgene, and accumulation of 
p23-specific small interfering RNAs 
(siRNAs). When propagations of these 
silenced lines were graft- or aphid-
inoculated with CTV, they showed no 
symptoms and did not accumulate virions or 
viral RNA, indicating that post-
transcriptional silencing of p23, conferred 
resistance to CTV in the silenced Mexican 
lime lines (70). Additional transgenic limes 
were obtained using the 3’-terminal 549 nt 
of the CTV gRNA in sense, anti-sense and 
intron-hairpin formats. While only a single 
sense-line plant with a complex transgene 
integration pattern was resistant, nine of the 
30 intron-hairpin lines showed CTV 
resistance, with 9%–56% of bud-propagated 
plants, remaining uninfected on graft 
inoculation. CTV resistance was correlated 
with low accumulation of the transgene-
derived transcript rather than with high 
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accumulation of transgene-derived siRNAs 
(136). 

Finally, transgenic Rio Red 
grapefruit trees expressing CTV genes are 
under testing for CTV resistance in Texas  
(253). 

CTV as a virus vector for systemic 
expression of foreign genes in citrus. The 
CTV vector for expression of foreign genes 
in citrus as engineered by W. O. Dawson 
and his colleagues in Florida has been the 
result of several lines of work: (1) 
development of a full-length infectious CTV 
cDNA clone; (2) in vitro-production of RNA 
transcripts from the cDNA clone; (3) 
infection of Nicotiana benthamiana 
protoplasts with the RNA transcripts and 
production of virus of the cDNA clone 
(recombinant virus); (4) amplification of  the 
virus by successive passages in protoplasts 
using virions in crude sap as inoculum; (5) 
by the third to seventh passages in 
protoplasts, maximal amounts of 
recombinant progeny virus were produced, 
which were used for inoculation of small 
citrus trees by slashing stems in the presence 
of virion preparations (196). A relatively 
high percentage of plants became infected 
with the recombinant virus from the 
protoplasts, resulting in the first defined 
pure culture of CTV in plants. The 
comparative biology of the pure culture of 
recombinant CTV with that of the parental 
population in planta demonstrated that the 
recombinant virus retained through all of the 
recombinant DNA manipulations the normal 
functions of replication, movement, and 
aphid transmissibility, and had a symptom 
phenotype indistinguishable from that of the 
parental population (222, 223). Several 
strategies were examined to develop a CTV-
based vector for transient expression of 
foreign genes in citrus trees using the green 
fluorescent protein (GFP) as a reporter. 
Engineered vector constructs were examined 
for replication, encapsidation, GFP 

expression during multiple passages in 
protoplasts, and for their ability to infect, 
move, express GFP, and be maintained in 
citrus plants. The most successful vectors 
based on the 'add-a-gene' strategy have been 
unusually stable, continuing to produce GFP 
fluorescence after more than 4 yr in citrus 
trees (73). One of these vectors has been 
useful to compare CTV distribution in the 
phloem of different citrus species (74). 

The CTV vector and control of 
huanglongbing. In 2004 and 2005 
huanglongbing (HLB) was detected 
respectively in Brazil and Florida. There is a 
general consensus that the citrus industry, 
because of HLB, cannot survive in the 
absence of trees resistant to HLB. As such 
trees do not exist to date, they have to be 
produced. Since the causal agent of HLB is, 
most-likely, the bacterium Candidatus 
Liberibacter asiaticus, citrus trees carrying 
and expressing the gene for an anti-
microbial peptide (AMP) killing or 
inhibiting the liberibacters, would be 
resistant to HLB. To that purpose, Dawson’s 
CTV-based vector comes in most 
appropriately. The CTV-vector allows 
insertion of one, two or three AMP genes 
into the viral genome and expresses the 
extra gene(s) as it multiplies and spreads 
throughout the trees. The foreign gene is 
expressed systemically in both shoots and 
roots. Most interestingly, after having been 
amplified within an initial citrus tree, the 
vector can be transmitted by graft-
inoculation to other citrus trees of any size 
or variety. Since it is generally 
acknowledged that expression from a viral 
vector is not permanent, but transient, the 
CTV-vector was first used for introducing 
AMP genes into citrus and screening them 
against bacterial diseases such as citrus 
canker or HLB. As however the vector has 
continually expressed foreign genes in citrus 
for six years, it is very likely that a high 
percentage of the trees will retain the foreign 
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peptide gene for ten years or more, and 
therefore the vector is now used towards the 
production of HLB- and/or canker-resistant 
trees (57). Data have already been produced 
which show that two to three AMP peptides 
could be expressed from the same vector. 
Thus, it would be possible to express from 
the same vector, for instance, two different 
proteins against HLB and another against 
citrus canker. A vector has already been 
developed that will allow re-application of 
anti-HLB protein or peptide when the first 
vector has lost the gene. Alternatively, a 
second application of something better could 
be added. It has been suggested that the 
CTV-vector could be graft-inoculated into 
selected rootstock species (able to multiply 
CTV) so that scions would become infected 
through transfer of the vector across graft 
unions from rootstock to scion. Essentially, 
any gene could be used in the vector, 
whether its product directly interacts with 
the liberibacter, induces the plant to become 
more resistant, induces the plant to tolerate 
the bacterium, induces the plant to reduce 
movement of the bacterium, or other means. 

In the CTV-vector approach, the 
HLB-resistant trees to be produced are not 
transgenic trees, the foreign gene is not 
inserted in the citrus genome and there will 
be no gene dispersion through pollen to 
weeds or different plants, including citrus. 
The most efficient vector of CTV, 
Toxoptera citricida, is present in Florida 
since 1995. If the CTV-vector is aphid-
transmissible, it will be naturally transmitted 
to other citrus trees, which will become 
theoretically HLB-resistant. This might be a 
favorable situation regarding resistance to 
HLB, but it might not be accepted by 
regulatory agencies or the public at large. If 
so, the CTV-vector can probably be 
engineered so as to become non-
transmissible by the aphids. 

 Tristeza: conclusion. Control of 
quick decline tristeza through replacement 
of sour orange by compatible rootstocks was 
essentially developed in the 1940-1950s and 
saved the citrus industry. One of the major 
achievements of the scientific community in 
favour of the citrus industry over the last 50 
yr has been the use protective CTV isolates 
to control stem pitting by pre-immunization 
of Pera sweet orange in Brazil, Morita sweet 
orange in Japan, white and red grapefruit 
varieties in Australia and South Africa, as 
well as many other varieties in many other 
countries (125, 188, 255). Initially, 
protective (mild) strains were collected from 
surviving or good-looking trees in severely 
affected and declining orchards. Selection of 
protective isolates was empirical and time 
consuming. The putative protective strains 
were characterized and differentiated from 
one another by the comparison of 
symptoms, mild or severe, that developed in 
inoculated indicator plants in the greenhouse 
or in experimental trees in the field. Such 
biological characterizations of CTV isolates 
have remained indispensable (193), but have 
been complemented by molecular 
techniques in recent years, when it became 
known that, as with other RNA viruses, 
CTV isolates do not contain a unique 
genomic sequence. They have a population 
of sequence variants usually clustered 
around one or more master or consensus 
sequences (10) whose composition affects 
their biological properties. Characterization 
of this population structure is crucial to 
understand the biology and evolution of 
CTV isolates. SSCP (210, 212) has been 
found well suited to assess the population 
structure of CTV isolates, and several 
examples of such SSCP analyses have been 
given above. Finally; the future will tell if 
CTV, as a vector for expression of foreign 
genes in citrus, will contribute to save the 
citrus industry from huanglongbing.  
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II 2. OTHER VIRUSES 
 
 
 In 1957, citrus diseases, which were 
graft- or arthropod-transmissible were 
presumed to be caused by viruses, as they 
were the only infectious agents of plants 
known in those days. Indeed, the phloem- 
and xylem- restricted bacteria were only 
discovered from 1967 on, and the viroids, 
from 1971 on. Chapter I has been devoted to 
the viroid diseases of citrus. Section II 1, 
reviewed separately above, deals with one of 

the major virus diseases of citrus: tristeza. It 
was not the first citrus virus to be purified - 
putative particles of Citrus tristeza virus 
were seen in the electron microscope in 
1963 (96), and partial purification was 
reported in 1965 (179). In 1963, icosahedral 
particles were purified from plants infected 
by Satsuma dwarf virus. Since then, several 
more viruses in citrus have been detected 
and characterized to varying degrees, and 
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the following lines review these 
developments. Much of this information has 
been presented at IOCV conferences. The 
final section (III) deals with diseases whose 
agents turned out to be endogenous phloem-
or xylem-restricted bacteria. 
 Satsuma dwarf virus (SDV). 
Satsuma dwarf was first reported from Japan 
in 1950 (208, 209), and was subsequently 
reported from Turkey (9), China (33, 215),  
and Korea (100). On Satsuma, SDV causes 
stunting and boat-shaped leaves.   It can 
infect all citrus types and many close 
relatives, but it is most severe in mandarins. 
Several non-citrus rutaceous species have 
been shown to support SDV infection (89). 
One non-rutaceous natural host has been 
identified, China laurestine (Viburnum 
odoratissimum), which is symptomless (99), 
and SDV has been mechanically transmitted 
to cowpea, sesame, and several Nicotiana 
spp. amongst others (94, 184, 187).  No 
vector has been identified, but SDV does 
move naturally slowly in orchards in 
concentric circles; a soil inhabiting vector is 
suspected (101). Transmission is enhanced 
where China laurestine is interplanted with 
citrus (101). 
 In 1963 icosahedral virions 
measuring 26 nm were isolated from 
infected tissue (170). Electron microscopy 
of SDV-infected leaf tissues revealed 
spherical viruslike particles in the cytoplasm 
and in membrane-bound tubules (169).  The 
virus can be resolved by sucrose gradient 
centrifugation into three components, one of 
which is composed of empty capsids. The 
capsid is composed of two coat proteins of 
42 kDa and 22 kDa respectively (183), and 
the genome consists of two single-stranded 
positive-sense RNA molecules, namely 
RNA1 (7.0 kb) and RNA2 (5.4 kb) (86). It 
was initially considered as a tentative 
member of the Nepovirus genus in the 
Comoviridae family (87). 

 Four closely related viruses, Citrus 
mosaic virus (CiMV), Navel orange 
infectious mottling virus (NIMV), 
Natsudaidai dwarf virus (NDV) (186) and 
Hyuganatsu virus (HV)(82) were also 
reported in Japan. The first three are 
serologically related to SDV and each other, 
and share over 75% amino acid sequence 
identity (87).  CiMV and NIMV virions 
have similar morphology to SDV, although 
NIMV is slightly smaller (185).  
 The nucleotide sequences of the 
CiMV coat protein gene on RNA2 (83) and 
the RNA dependent RNA polymerase 
(RdRp) gene on RNA1 (84) show little 
similarity to viruses in the Comoviridae 
family. The nucleotide sequence of SDV has 
also been determined (85, 88), and it was 
concluded that SDV was sufficiently distinct 
from the Comovirus, Fabavirus and 
Nepovirus genera in the Comoviridae 
family, and should belong to a separate 
genus.  It was later shown that by comparing 
SDV with CiMV, NIMV and NDV, they can 
be placed into three species, namely SDV, 
CiMV (including NDV) and NIMV (86), 
and that they are separate from the 
Comoviridae and Sequiviridae families (91).  

It has since been proposed to name 
Satsuma dwarf virus as the type member of 
a new genus called Sadwavirus, and that 
CiMV, NDV, NIMV and HV are isolates of 
SDV (104).  Strawberry mottle virus is also 
a member of this genus. No family has been 
designated so far. 

Control is primarily by the use of 
virus-free budwood. SDV can be eliminated 
by heat treatment (80) and shoot tip grafting. 
The possibility of providing protection via 
transgenic resistance has been investigated.  
Trifoliate orange lines transformed with the 
capsid polyprotein gene from CiMV were 
obtained and showed varying degrees of 
susceptibility and tolerance; one line had an 
infection rate of only 7% 60 days after 
inoculation (90). 
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 Citrus variegation virus (CVV) and 
Citrus leaf rugose virus (CLRV). Infectious 
variegation (IV) on lemon was first reported 
in California in 1939 (51).  The disease was 
transmitted by graft-inoculation to lemon 
and sour orange seedlings, causing mosaic-
like variegation, crinkling, flecking and 
distortion.  Shortly before this in 1936, a 
disorder called crinkly leaf (CL) psorosis 
was described (48).  It was soon recognized 
IV and CL were barely distinguishable (50), 
CL having essentially crinkle leaf symptoms 
but no variegation symptoms. Later it was 
found that both syndromes are incited by 
strains of the same virus, Citrus variegation 
virus (CVV). In addition to California, IV 
has been reported in Florida (68) and several 
Mediterranean countries (117).  In Florida, a 
disease called citrus leaf rugose was 
described in 1975 which shared some 
characteristics with IV and CL (62).  IV and 
CL  were initially thought to be part of the 
citrus psorosis complex, but as progress was 
made in virus characterization, it became 
clear that they are not related to psorosis; 
psorosis did not provide cross protection 
against IV (32), and virions similar to those 
purified from CVV-infected plants were not 
present in psorosis-infected trees (189). For 
concave gum, blind pocket, crinkly leaf, 
infectious variegation, leaf rugose, 
cristacortis and impietratura to be unrelated 
to psorosis. [See also “Concave Gum – 
Blind Pocket”, Roistacher & Bové (2009), 
in: Citrus Diseases, www.ivia.es/iocv]. 
 In 1960, mechanical transmission of 
IV was achieved, the first citrus virus to be 
transmitted in this way (68). Purification of 
virions was reported shortly thereafter (31, 
37, 42, 121, 211). Both IV and CL were 
associated with three components that could 
be separated by gradient centrifugation, but 
only the bottom component was  infectious 
on its own. The particles are mostly 
spherical, measuring 25-30 nm.  CLRV was 
purified in 1974, its virions having the same 

characteristics as CVV (62). CVV was 
shown to be serologically related to several 
ilarviruses including Tulare apple mosaic, 
Elm mottle and asparagus viruses IIP and 
IIS (192).  Calvert et al. (23) used CVV 
RNA to prepare a library of cDNA clones, 
which they used to characterize the 
homology between two CVV isolates and 
one CLRV isolate. 
 CVV and CLRV are now classified 
as members of the genus Ilarvirus in the 
family Bromoviridae. The nucleotide 
sequence of CLRV RNA1 consists of 3,404 
nucleotides and contains one open reading 
frame (ORF) which encodes a putative 
translation product of 1,051 amino acids 
(118 kDa) (177). RNA2 consists of 2,990 
nucleotides and contains one ORF which 
encodes a deduced translation product of 
832 amino acids (95 kDa) (66). The coat 
protein gene is encoded on RNA3, and 
comparisons between CVV and CLRV 
indicate that CVV may be more closely 
related to other ilarviruses than to CLRV 
(14). 
 Lovisolo (110) speculated that since 
ilarviruses were first found in citrus in North 
America and Europe, they may have been 
introduced into citrus there via infected 
pollen, or thrips.   
 Citrus tatter leaf virus (CTLV). 
Citrus tatter leaf was first described in 
California by Wallace and Drake (204) in 
Citrus excelsa which developed foliar 
symptoms after graft inoculation from 
apparently healthy Meyer lemon. Troyer 
citrange also developed symptoms, and 
Wallace and Drake (205, 206) attributed 
these symptoms to a second virus which 
they called citrange stunt virus (CSV).  
Attempts to separate tatter leaf from citrange 
stunt by successive graft inoculation 
passages through various citrus species 
during 22 yr were unsuccessful, and the 
conclusion was drawn that only one virus 
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was involved: Citrus tatter leaf virus 
(CTLV) (156, 159).  

In Japan in 1962, satsuma trees on 
trifoliate orange rootstocks were observed 
with scion swellings above the rootstock  
and bud-union crease (181), and indexing 
studies on these trees using C. excelsa and 
citrange resulted in tatter leaf symptoms 
(132). A later study showed that trees in 
Japan with bud-union crease are consistently 
infected with CTLV (130). A 25% reduction 
in yield of CTLV-infected Ponkan mandarin 
on trifoliate orange compared to healthy 
trees has been reported (182). 

CTLV has been reported in Meyer 
lemons from several countries including 
South Africa (34 ), Australia (20), and the 
USA states of Florida (61) and Texas (188).  
In South Africa, a budunion-crease of 
Shamouti orange on Swingle citrumelo was 
attributed to CTLV  (119).  Also in China, 
mandarin and orange trees on trifoliate 
orange displaying budunion crease were 
found to be infected with CTLV (92). 

CTLV infects most Citrus species 
symptomlessly (133). Chlorotic leaf lesions 
are produced in Mexican lime, C. excelsa, 
citranges and citrumelos. The virus can be 
mechanically transmitted to many 
herbaceous plants. In cowpeas it causes 
necrotic local lesions and variable systemic 
necrosis, and in Chenopodium quinoa, 
chlorotic local lesions appear on inculated 
leaves, followed by a systemic mottle. The 
virus has also been isolated from wild lily 
(Lilium longiflorum) in Japan with 
yellowing symptoms (81). 

Semancik and Weathers (178) 
partially purified from cowpeas flexuous 
rod-shaped particles measuring 650 x 19 
nm, and Miyakawa and Matsui (132) 
observed 600-700 x 15 nm particles in leaf-
dip preparations from citrus and cowpea. 
Later, Nishio et al. (150) purified the virus 
and determined by electron microscopy that 
the flexuous particles were 600-650 x 13 

nm, with conspicuous criss-cross patterns 
when stained with uranyl acetate. The coat 
protein is a single species of 27 kDa, and the 
virus possesses a single RNA species of 
6,496 nt (151). CTLV is serologically 
related to Apple stem grooving virus 
(ASGV), a Capillovirus in the family 
Flexiviridae.  Comparing the sequence of 
the 3'-terminal end nucleotides of the CTLV 
genome to that of the ASGV genome, 
Yoshikawa et al. (210) concluded that 
CTLV is a capillovirus closely related to 
ASGV. Magome et al. (114) compared 
sequences of several ASGV isolates from 
apple, Japanese pear and European pear with 
those of CTLV from citrus, and concluded 
that CTLV should be considered an isolate 
of ASGV.  

Evidence for CTLV strain variability 
has been presented on the basis of (i) 
symptom expression with some isolates 
failing to induce budunion crease (134), (ii) 
serology where ELISA with both CTLV and 
ASGV antisera gave variable results (75), 
and (iii) nucleotide sequencing (114).  

CTLV is readily transmitted 
mechanically (61). Seed transmission has 
been reported in both L. longiflorum and C. 
quinoa plants (81), but not in kumquat 
(149).  Control is achieved by using virus-
free budwood. CTLV is not eliminated by 
standard shoot tip grafting (161), but 
thermotherapy of 40°/30°C for more than 60 
days is effective (22, 131, 158). Because 
satsuma budwood is intolerant to the 
temperatures used for thermotherapy, 
Koizumi (99) developed a method of 
subjecting a CTLV-infected satsuma with 
new shoots to shorter heat treatment and 
using  shoot tip grafting thereafter. This 
procedure resulted in CTLV-free plants. 
Also, when Valencia or Washington navel 
orange budsticks were grown at 32°C and 
new shoots with three leaf primordia were 
grafted in vitro, about 42% of CTLV-free 
plants were obtained (142). 
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 Citrus leprosis viruses (CiLV). 
Leprosis was originally thought by both 
Floridian and South American researchers in 
the early 20th century to be a fungal disease 
(46), but spray trials in Florida in 1950 
provided evidence against this theory (98). 
The association of leprosis with false spider 
mites (Brevipalpus spp.) led to the virus 
theory (15, 48). Knorr (97) showed that 
grafting symptomatic bark tissue into young 
citrus stems resulted in a localized spread of 
the leprosis agent into the receptor host as 
witnessed by localized lesion development. 
These results provided evidence of 
transmission of an infectious agent, and 
were confirmed by Rossetti et al. (163) who 
demonstrated that mites from leprosis-free 
areas were unable to transmit leprosis unless 
they had access to affected tissues. 
 Citrus leprosis has spread to several 
South and Central American countries (71, 
155), and most recently into Mexico (170). 
It has not been reported in Florida since 
1968 (26). On leaves, local lesions begin as 
chlorotic patches which can develop a 
necrotic center with a chlorotic halo (163). 
Older, larger lesions may contain concentric 
brown rings sometimes containing gum. 
Fruit symptoms start as flat yellow patches, 
and as the fruit matures the lesions enlarge, 
turn black or brown and become sunken. 
Lesions on twigs and branches start as small 
chlorotic flat patches which coalesce into 
raised, brown areas. Extensive lesion 
formation causes dieback, and psorosis-like 
bark scaling develops (155).  Leprosis can 
be  mechanically transmitted to several 
herbaceous plant species (111, 112). 
  In 1972,  Kitajima et al. (95) 
observed  by electron microscopy short, rod-
like particles  measuring 100-200 nm x 40 
nm in leprosis- infected sweet orange tissue, 
with some particles apparently budding 
through the nuclear membrane (“nuclear” 
type virus). Later, EM studies revealed non-
enveloped particles (120-130 x 50-55 nm) in 

the endoplasmic reticulum (28, 111), 
sometimes with dense viroplasm-like masses 
in the cytoplasm (“cytoplasmic” type virus) 
(155). Both types of virus were described as 
rhabdovirus-like, with the cytoplasmic form 
much more common than the nuclear one 
(71).The first report of partially purified 
virions from leprosis-infected tissue came in 
2000, with the publication of electron 
micrographs showing 80-120 x 45-50 nm 
rod shaped particles (29); unfortunately, the 
authors did state whether this was the 
cytoplasmic or nuclear form. 
 The discrepancy between the nuclear 
and cytoplasmic forms of leprosis virus has 
now been largely resolved. Guerra-Moreno 
et al. (71) constructed a cDNA library from 
an RNA extract of the cytoplasmic virus. 
They identified two RNA species (RNA1 
and RNA2), which did not hybridize with 
the nuclear types, suggesting that two 
distinct viruses were involved. The complete 
nucleotide sequence of both RNAs of the 
cytoplasmic form was published in 2006 and 
while there were some sequence similarities 
with genera such as Tobamovirus, 
Bromovirus, Furovirus and Tobravirus, and 
no similarity with the Rhabdoviridae, it was 
concluded that the cytoplasmic form of the 
virus be considered the type member of a 
new genus, Cilevirus, in an unassigned 
family (106). The nuclear type virus remains 
unclassified. 
 Citrus psorosis virus (CPsV). Citrus 
psorosis bark scaling symptoms were first 
observed in Florida in 1896 (180), but the 
graft-transmissibility and hence the 
infectious nature of the causal agent was 
only demonstrated 30 yr later, first by the 
induction of leaf flecking symptoms in graft-
inoculated seedlings (47) and then in the 
reproduction of bark scaling (49).  The 
widespread occurrence of psorosis in 
California and Texas was the stimulus of the 
first budwood registration program (154). 
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 Because leaf flecking symptoms of 
various types were also induced when 
seedlings were inoculated from trees with 
crinkly leaf and concave gum diseases, these 
were referred to as psorosis-type diseases, 
but cross protection studies did not support 
this conclusion (32, 65) and later virus 
protein studies established that they were not 
related (35). For concave gum, blind pocket, 
crinkly leaf, infectious variegation, leaf 
rugose, cristacortis and impietratura to be 
unrelated to psorosis. [See also “Concave 
Gum – Blind Pocket”, Roistacher & Bové 
(2009), in: Citrus Diseases, 
www.ivia.es/iocv]. 
 The report of a new disease of citrus 
named citrus ringspot in 1968 (206) actually 
led to the purification of Citrus psorosis 
virus (CPsV). It was found to be 
mechanically transmissible to some 
herbaceous plants (65), which aided 
determining which fractions during 
purification were infectious (41, 58, 147).  
Infected plants were found to contain a 48 
kDa protein, and antiserum to this was used 
to trap particles for electron microscopy 
(41). The particles were of two lengths, and 
appeared to be spiral in shape.  Psorosis 
strains of different origins were shown to 
have associated similar spiral particles and 
capsid protein (35, 146).  An elegant EM 
study determined that the filamentous 
particles occur in both open circular form 
and closed linear forms (59, 128). It was 
proposed that the name Ophiovirus be 
adopted. It is now the accepted genus name, 
CPsV is the type species, and a new family, 
Ophioviridae, has been designated (129).  
The genome of two different CPsV isolates 
were completely sequences, and in both 
cases it was found to consist of three 
separately encapsidated genomic RNAs, two 
of them associated with the smaller particles 
and one with the larger (125, 137, 138, 172, 
173, 175). Genomic variation of CPsV 
isolates from different countries was 

analyzed (126) and at least three distinct 
groups have been recognized. Phylogenetic 
analyses also indicated that exchange of 
genomic segments may have contributed to 
CPsV evolution (126). 
 Monoclonal and new polyclonal 
antibodies to CPsV were developed in 
different laboratories (6, 43, 107) that 
enabled quick detection of the virus by 
several ELISA procedures (6, 7, 44, 45, 60, 
107, 123, 213). After sequencing the CPsV 
genomic RNA, detection of the virus was 
also achieved by molecular hybridization 
and RT-PCR techniques (108, 109, 60, 124). 
Although Koch's postulates have not yet 
been fulfilled for psorosis disease, detection 
of CPsV by ELISA, molecular 
hybridization, RT-PCR and EM was closely 
associated with psorosis diseases as 
diagnosed by field symptoms, biological 
indexing and cross protection against severe 
psorosis B isolates (124). 
 No vector has been identified, but 
there is evidence of natural spread in 
orchards (13, 190), and Olpidium zoospores, 
known to carry other ophioviruses, obtained 
from the roots of psorosis infected trees 
contain CPsV RNA (153). In regions where 
no natural spread was observed, the disease 
has been controlled by appropriate 
sanitation, quarantine and budwood 
certfication procedures (140, 142, 143). For 
regions with natural disease spread, 
additional measures may be necessary. For 
this purpose, transgenic plants showing 
pathogen-derived resistance have been 
obtained (212). 
 Citrus vein enation virus (CVEV). 
Citrus vein enation was first described in 
California on rough lemon and Mexican 
lime and shown to be caused by an aphid-
transmitted pathogen (202, 203). Woody 
gall was first described on rough lemon in 
Australia (54, 55), and it was soon 
demonstrated that these two symptoms were 
caused by the same agent (203). Vein 
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enation/ woody gall has been reported from 
many countries, and probably has almost 
world-wide distribution. It is a non-
destructive disease, and the only report of 
reduced growth is in young trees with 
extensive woody gall symptoms in Peru 
(12). 
 Enations are initiated as cytological 
abnormalities of phloem fiber primordial 
cells adjacent to protophloem sieve tubes 
(78). They enlarge by hyperplasia of the 
affected fiber primordials. The mesophyll 
and epidermal tissue on the abaxial side of 
leaf veins divide less prolifically and their 
growth ceases as leaves mature. Woody 
galls develop from affected cells of 
procambial tissue between metaxylem and 
metaphloem of vascular bundles, and 
contain large amounts of abnormal xylem 
tissue. Gall growth is indeterminate. 
 Rough lemon, Volkamer lemon, 
Rangpur lime and Mexican lime develop 
galls. Lime and sour orange develop 
conspicuous vein enations in the field, while 
sweet orange, lemon, mandarin and rough 
lemon develop enations under cool 
greenhouse conditions. Enations are 
sometimes present in infected Palestine 
sweet lime and kumquat. In India, enations 
have been observed on grapefruit, C. 
amblycarpa, C. macroptera, C. latipes and 
C. pennivesculata (118). No non-rutaceous 
host has been reported. 

There is a reported synergistic effect 
between CVEV and the yellow vein 
pathogen resulting in a marked enhancement 
of the yellow vein symptom in Etrog citron, 
rough lemon and Mexican lime (207). In 
Japan, CVEV was shown to cross-protect 
against Citrus tristeza virus in some hosts 
(102). Vein enations are suppressed in 
Mexican lime and Pineapple sweet orange 
by CTV T30 isolates, but not by other 
isolates, and are not suppressed in sweet 
orange by viroids (193). 

CVEV is transmitted in a persistent 
manner by several species of aphids, namely 
Myzus persicae, Aphis gossypii, Toxoptera 
aurantii (73) and T. citricida (116), which 
are also semi-persistent vectors of CTV. 
There is a latency period of 2-3 days. There 
is no evidence for seed transmission. 

Virus-like particles were observed by 
electron microscopy of enations from rough 
lemon leaves and in the salivary glands of 
viruliferous aphids (115). Isometric particles 
have been purified , and based on 
morphology and disease characteristics, it 
was suggested that CVEV might be a 
luteovirus (36). It was then demonstrated 
that positive ELISA results could be 
obtained for CVEV using some commercial 
Barley yellow dwarf virus kits (27). 
Attempts to amplify cDNA using luteovirus 
primers have not been successful, thus the 
luteovirus proposal remains unconfirmed. 
 Citrus yellow mosaic virus (CYMV).  
In 1993, a graft-transmissible mosaic disease 
of pummelo was reported from India (2). 
Bacilliform particles were detected in 
extracts from infected leaf tissue, and it was 
suggested that the associated virus was a 
rhabdovirus. Subsequently, the disease, 
which was named citrus yellow mosaic, was 
found causing losses in sweet orange (4).  
Partial characterization of the virus showed 
that it was not a rhabdovirus, but that it 
possesses a dsDNA genome, and via 
sequence determination it was found to be a 
Badnavirus (4, 5). Serological studies 
showed it to be serologically related to 
sugarcane bacilliform badnavirus (4). 
Subsequent DNA sequencing and 
phylogenetic analysis has shown CYMV to 
be most closely related to Cacao swollen 
shoot virus (10, 79). The complete 
nucleotide sequence has been determined to 
be 7,559 bp in length and to contain six 
putative open reading frames (79). 
 Electron microscopy of CYMV-
infected leaves revealed the presence of 
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aggregations of free virions in cells, as well 
as inclusions or viroplasms in the cytoplasm, 
similar to other badnaviruses (18). 
 Transmission from citrus to citrus 
by the citrus mealybug, Planococcus citri, 
has been shown (64). The virus has been 
experimentally transmitted to three non 
citrus hosts, Canna indica, sorghum and 
maize (8). 
 Indian Citrus ringspot virus 
(ICRSV). A psorosis-like ringspot was 
discovered in India on sweet orange in 1989, 
but field trees did not develop bark scaling 
(1).  Filamentous rod-shaped particles 
resembling capilloviruses were purified 
from infected leaves with modal dimensions 
of 640 x 15 nm (21). There was no 
serological reaction to antisera against 
Florida citrus ringspot virus, now known to 
be a strain of CPsV. Further characterization 
of the virus has shown it to have a ssRNA 
genome of 7.5 kb, and a coat protein of 34 
kd (166). Several isolates of ICRSV from 
different parts of India have been described 
and analysis showed some variation near the 
N terminus of the coat protein but 
conservation in the core region (76). 
Comparisons showed some isolates had 98-
99% homology, while others showed only 
84-85% homology (166, 168). All were 
serologically related. 
           It has been proposed that ICRSV is 
the type member of a new genus, 
Mandarivirus, in the family Flexiviridae 
with Potexvirus being the closest related 
genus (166, 168).  
 It can be mechanically transmitted to 
Chenopodium quinoa, C. amaranticolor, 
soybean, cowpea and French bean cv. Saxa 
(167). No natural vector has been identified. 
Virus-free plants have been generated 
through shoot tip grafting (77). 
 Citrus leaf blotch virus (CLBV). A 
new graft transmissible agent was reported 
in 1984 in Nagami kumquat from Corsica 
showing a bud union crease on Troyer 

citrange (141). In a host range study, the 
agent caused three types of symptoms: (i) 
vein clearing in sweet orange, sour orange, 
Troyer citrange, grapefruit, Dweet tangor, 
Orlando tangelo, alemow, but not Mexican 
lime amongst others; (ii) stem pitting in 
Etrog citron, and (iii) graft incompatibility 
on Troyer citrange. Some 800 nm flexuous 
particles were observed in leaf dip 
preparations. Many years later, partial 
purification studies resulted in the detection 
of 900 x 14 nm particles containing a 
ssRNA genome of 8,747 nt and a coat 
protein of 41 kDa (56, 194, 195). The virus 
was named Citrus leaf blotch virus and 
suggested to be the type species of a new 
genus (196). It has been detected in citrus in 
Australia, USA and Japan (195). Sequence 
comparisons between isolates from different 
countries showed very low genetic 
variability (197), thus allowing reliable 
detection of CLBV by molecular 
hybridization and RT-PCR (57, 195). A 
cDNA clone of the CLBV genomic RNA 
was shown to be infectious in Nicotiana 
occidentalis, N. benthamiana and in citron. 
Virions produced from this clone were 
indistinguishable from the wild type and 
induced characteristic leaf blotching in 
Dweet tangor and stem pitting in citron, but 
not bud union crease in plants propagated on 
citranges, suggesting that an additional agent 
was present in the original CLBV isolate 
(198). 
 In 1968, routine biological indexing 
of citrus in California showed the presence 
of a graft-transmissible agent in Cleopatra 
mandarin which caused chlorotic blotching 
in Dweet tangor. The agent was named 
Dweet mottle virus (DMV) (159). After the 
partial characterization of CLBV, two 
sources of DMV were compared with CLBV 
(199). DMV induced leaf blotch in Dweet 
tangor and stem pitting in Etrog citron, but 
no symptoms in other species. Nucleotide 
sequencing showed that there was 96-98% 
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homology (depending on the gene) between 
CLBV and DMV, suggetsing that CLBV is 
actually the causal agent of Dweet mottle 
disease (198). A low rate of seed 
transmission of CLBV has been reported 
(72), thus forcing a change in quarantine and 
certification procedures related to citrus 
seed. 
 Citrus yellow vein clearing virus 
(CYVC). A survey of citrus in Pakistan 
reported in 1988 described a disease of 
lemons and sour orange with 
variegation/ringspot symptoms which were 
negative for CVV in ELISA (24). Bové (16) 
described the same symptoms which he 
called 'yellow vein clearing'. In a further 
survey conducted by Catara et al. (25), 
symptoms were not found in sweet orange, 
mandarin, grapefruit or limes in the field. 
Graft transmissibility was demonstrated, 
with typical symptoms on lemon and sour 
orange, and a mild mottle in sweet orange. 
Then, Grimaldi and Catara (69) detected 
flexuous particles in partially purified 
preparations, with modal length of 670-700 
nm. Electron microscopic examination of 
infected tissue revealed low numbers of 
filamentous particle aggregates in phloem 
cells. Yellow vein clearing has also been 
reported from Turkey (152). 
 Miscellaneous viruses. There is a 
number of citrus diseases whose etiology 
remains undetermined. There are some for 
which viruses have been associated with, but 
their role in the disease is still unknown. 
Citrus blight, which was first reported in 
Florida in the 1890s, received a lot of 
attention in the latter part of the 20th 
century, but the causal agent remains 
elusive; an idaeovirus was reported from 
infected trees (39), and there has been a 
suggested role for unusual strains of CTV 
found in roots of blighted trees (40). A 
newer disease in Brazil, citrus sudden 
death (CSD) (17, 67, 135), has 
epidemiological (11) and anatomo-

pathological (162) similarities to CTV. A 
Marafivirus, as well as CTV, which is 
endemic in Brazil, have been detected in all 
CSD infected trees (112). CSD is graft-
transmissible, and an aerial vector is 
involved (30). The respective roles of the 
Marafivirus and CTV in CSD are not 
known. Another marafivirus-like agent was 
reported in Texas, apparently causing a 
symptomless infection  (74).  
 In 1972, Tobacco necrosis virus 
(TNV), a Necrovirus,  was detected in citrus 
leaves infected with either psorosis or 
concave gum plus cristacortis (212). Back 
inoculation of purified TNV to several citrus 
species resulted in local necrotic lesions.  
Olive latent virus 1, a Necrovirus in the 
Tombusviridae family, has also been 
detected in citrus in several Mediterranean 
countries - it does not appear to cause any 
disease symptoms (53, 121). 
 In 1983, a report at the 9th IOCV 
conference presented evidence of flexuous 
particles in association with a new, graft-
transmissible disease of Satsuma trees in 
Japan called citrus yellow mottle (191). 
Unfortunately, no further work has been 
reported.  A latent virus was detected in a 
symptomless navel selection which was 
mechanically transmitted to several 
herbaceous hosts (63). Flexuous particles 
were observed in extracts of both the citrus 
and non citrus hosts.  
 Rod-shaped virus particles were 
isolated from a psorosis isolate in California 
(105), and a cucumovirus from a tatter leaf 
source (120). They are presumably latent 
viruses co-infecting with CPsV and CTLV 
respectively. 
 Diseases of Unknown Etiology. 
While the few viruses mentioned above may 
not all cause diseases, there are several other 
citrus diseases for which no pathogen of any 
sort has so far been detected. These include 
concave gum and blind pocket (52), 
cristacortis (200), abnormal bud union of 
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rough lemon with sweet orange scions (70, 
127, 143), impietratura (165), yellow vein 
(207), leathery leaf (3), yellow ringspot 
(135, 144, 145) and similar diseases 
designated by other names (19, 38), fatal 
yellows (175, 176), Bahia bark scaling 

(148), chlorotic dwarf (93),  measles (103) 
and several others. New technologies are 
being developed which will probably 
identify some of these pathogens; there is 
still much work to be done. 
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	Transmission and epidemiology of CTV. CTV dispersal in nature occurs via different aphid species depending on the world region. While Toxoptera citricida, the most efficient CTV vector, was well established for years in Asia including the Indian subcontinent, Australia, sub-Saharan Africa and South America (50, 149), in the nineties of the past century the aphid reached Venezuela, Central America and different Caribbean countries including Cuba, Dominican Republic and Florida (29, 112, 134, 197, 256, 257). Recently, it has been detected in back yard citrus trees in northern Spain and Portugal (126), far from the important citrus-producing areas. Aphis gossypii, that is about 6-25 times less efficient than T. citricida in transmitting CTV (256), was reported as the main vector in the Mediterranean basin and areas of North America (43, 58, 114, 140, 194, 254). A. spiraecola and T. aurantii were found less efﬁcient CTV vectors than A. gossypii (114, 185, 254); however, A. spiraecola might play an important role in CTV dispersal in some citrus areas due to the large populations it builds up in comparison with A. gossypii (114). Myzus persicae, A. craccivora and Uroleucon jaceae have been reported as CTV vectors only in India (240, 241). CTV transmission is considered to occur in a semipersistent mode, with viruliferous aphids being able to transmit the virus for at least 24 h, but infectivity being lost within 48 h after acquisition (194). The ratio of aphids carrying CTV in the ﬁeld ranges from 19 to 27%, as detected by nested RT-PCR ampliﬁcation of CTV RNA from individual aphids (140). The viral and aphid factors involved in CTV transmission are presently unknown, and the need for a helper factor as in other plant viruses (233) has not yet been demonstrated for CTV. This lack of knowledge on the transmission mechanism derives from the difficulty to aphid-transmit CTV after in vitro acquisition by the aphids from purified preparations (116). Inefficiency of this process is probably due to fragility of CTV virions that break easily during the purification process. 
	 CTV control: inoculum exclusion and suppression; shoot-tip grafting. The most efficient control measure for virus diseases is inoculum exclusion from non-affected areas. For the pathosystem CTV-citrus this can be achieved by launching sanitation, quarantine and certification programs. In early times, CTV-free budwood was obtained by growing nucellar plants, a very slow process that could not be applied to monoembryonic varieties, or by thermotherapy of infected varieties, a treatment that was inefficient with some CTV isolates (38, 199, 200, 201). Development of shoot-tip grafting in vitro (174, 175) was a major breakthrough that facilitated elimination of most graft-transmissible citrus pathogens (176, 179) and opened the way to improve quarantine procedures (177, 179) and to launch certification programs in which pathogen-free local varieties or imported ones could be safely propagated  by citrus growers (86, 173, 178, 180, 227, 229, 249, 259). 
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